analysis_report_node.py
16.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""
分析报告生成节点
在补货建议工作流的最后一个节点执行,生成结构化分析报告
"""
import logging
import time
import json
import os
from typing import Dict, Any
from decimal import Decimal
from datetime import datetime
from langchain_core.messages import HumanMessage
from ..llm import get_llm_client
from ..models import AnalysisReport
from ..services.result_writer import ResultWriter
logger = logging.getLogger(__name__)
def _load_prompt(filename: str) -> str:
"""从prompts目录加载提示词文件"""
prompts_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))),
"prompts"
)
filepath = os.path.join(prompts_dir, filename)
if not os.path.exists(filepath):
raise FileNotFoundError(f"Prompt文件未找到: {filepath}")
with open(filepath, "r", encoding="utf-8") as f:
return f.read()
def _calculate_suggestion_stats(part_results: list) -> dict:
"""
基于完整数据计算补货建议统计
统计维度:
1. 总体统计:总数量、总金额
2. 优先级分布:高/中/低优先级配件数及金额
3. 价格区间分布:低价/中价/高价配件分布
4. 周转频次分布:高频/中频/低频配件分布
5. 补货规模分布:大额/中额/小额补货配件分布
"""
stats = {
# 总体统计
"total_parts_cnt": 0,
"total_suggest_cnt": 0,
"total_suggest_amount": Decimal("0"),
# 优先级分布: 1=高, 2=中, 3=低
"priority_high_cnt": 0,
"priority_high_amount": Decimal("0"),
"priority_medium_cnt": 0,
"priority_medium_amount": Decimal("0"),
"priority_low_cnt": 0,
"priority_low_amount": Decimal("0"),
# 价格区间分布 (成本价)
"price_low_cnt": 0,
"price_low_amount": Decimal("0"),
"price_medium_cnt": 0,
"price_medium_amount": Decimal("0"),
"price_high_cnt": 0,
"price_high_amount": Decimal("0"),
# 周转频次分布 (月均销量)
"turnover_high_cnt": 0,
"turnover_high_amount": Decimal("0"),
"turnover_medium_cnt": 0,
"turnover_medium_amount": Decimal("0"),
"turnover_low_cnt": 0,
"turnover_low_amount": Decimal("0"),
# 补货金额分布
"replenish_large_cnt": 0,
"replenish_large_amount": Decimal("0"),
"replenish_medium_cnt": 0,
"replenish_medium_amount": Decimal("0"),
"replenish_small_cnt": 0,
"replenish_small_amount": Decimal("0"),
}
if not part_results:
return stats
for pr in part_results:
# 兼容对象和字典两种形式
if hasattr(pr, "total_suggest_cnt"):
suggest_cnt = pr.total_suggest_cnt
suggest_amount = pr.total_suggest_amount
cost_price = pr.cost_price
avg_sales = pr.total_avg_sales_cnt
priority = pr.priority
else:
suggest_cnt = int(pr.get("total_suggest_cnt", 0))
suggest_amount = Decimal(str(pr.get("total_suggest_amount", 0)))
cost_price = Decimal(str(pr.get("cost_price", 0)))
avg_sales = Decimal(str(pr.get("total_avg_sales_cnt", 0)))
priority = int(pr.get("priority", 2))
# 总体统计
stats["total_parts_cnt"] += 1
stats["total_suggest_cnt"] += suggest_cnt
stats["total_suggest_amount"] += suggest_amount
# 优先级分布
if priority == 1:
stats["priority_high_cnt"] += 1
stats["priority_high_amount"] += suggest_amount
elif priority == 2:
stats["priority_medium_cnt"] += 1
stats["priority_medium_amount"] += suggest_amount
else:
stats["priority_low_cnt"] += 1
stats["priority_low_amount"] += suggest_amount
# 价格区间分布: <50低价, 50-200中价, >200高价
if cost_price < 50:
stats["price_low_cnt"] += 1
stats["price_low_amount"] += suggest_amount
elif cost_price <= 200:
stats["price_medium_cnt"] += 1
stats["price_medium_amount"] += suggest_amount
else:
stats["price_high_cnt"] += 1
stats["price_high_amount"] += suggest_amount
# 周转频次分布: 月均销量 >=5高频, 1-5中频, <1低频
if avg_sales >= 5:
stats["turnover_high_cnt"] += 1
stats["turnover_high_amount"] += suggest_amount
elif avg_sales >= 1:
stats["turnover_medium_cnt"] += 1
stats["turnover_medium_amount"] += suggest_amount
else:
stats["turnover_low_cnt"] += 1
stats["turnover_low_amount"] += suggest_amount
# 补货金额分布: >=5000大额, 1000-5000中额, <1000小额
if suggest_amount >= 5000:
stats["replenish_large_cnt"] += 1
stats["replenish_large_amount"] += suggest_amount
elif suggest_amount >= 1000:
stats["replenish_medium_cnt"] += 1
stats["replenish_medium_amount"] += suggest_amount
else:
stats["replenish_small_cnt"] += 1
stats["replenish_small_amount"] += suggest_amount
return stats
def _calculate_risk_stats(part_ratios: list) -> dict:
"""计算风险统计数据"""
stats = {
"shortage_cnt": 0,
"shortage_amount": Decimal("0"),
"stagnant_cnt": 0,
"stagnant_amount": Decimal("0"),
"low_freq_cnt": 0,
"low_freq_amount": Decimal("0"),
}
for pr in part_ratios:
valid_storage = Decimal(str(pr.get("valid_storage_cnt", 0) or 0))
avg_sales = Decimal(str(pr.get("avg_sales_cnt", 0) or 0))
out_stock = Decimal(str(pr.get("out_stock_cnt", 0) or 0))
cost_price = Decimal(str(pr.get("cost_price", 0) or 0))
# 呆滞件: 有库存但90天无出库
if valid_storage > 0 and out_stock == 0:
stats["stagnant_cnt"] += 1
stats["stagnant_amount"] += valid_storage * cost_price
# 低频件: 无库存且月均销量<1
elif valid_storage == 0 and avg_sales < 1:
stats["low_freq_cnt"] += 1
# 缺货件: 无库存且月均销量>=1
elif valid_storage == 0 and avg_sales >= 1:
stats["shortage_cnt"] += 1
# 缺货损失估算:月均销量 * 成本价
stats["shortage_amount"] += avg_sales * cost_price
return stats
def _build_suggestion_summary(suggestion_stats: dict) -> str:
"""
基于预计算的统计数据构建结构化补货建议摘要
摘要包含:
- 补货总体规模
- 优先级分布
- 价格区间分布
- 周转频次分布
- 补货金额分布
"""
if suggestion_stats["total_parts_cnt"] == 0:
return "暂无补货建议"
lines = []
# 总体规模
lines.append(f"### 补货总体规模")
lines.append(f"- 涉及配件种类: {suggestion_stats['total_parts_cnt']}种")
lines.append(f"- 建议补货总数量: {suggestion_stats['total_suggest_cnt']}件")
lines.append(f"- 建议补货总金额: {suggestion_stats['total_suggest_amount']:.2f}元")
lines.append("")
# 优先级分布
lines.append(f"### 优先级分布")
lines.append(f"| 优先级 | 配件数 | 金额(元) | 占比 |")
lines.append(f"|--------|--------|----------|------|")
total_amount = suggestion_stats['total_suggest_amount'] or Decimal("1")
if suggestion_stats['priority_high_cnt'] > 0:
pct = suggestion_stats['priority_high_amount'] / total_amount * 100
lines.append(f"| 高优先级 | {suggestion_stats['priority_high_cnt']} | {suggestion_stats['priority_high_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['priority_medium_cnt'] > 0:
pct = suggestion_stats['priority_medium_amount'] / total_amount * 100
lines.append(f"| 中优先级 | {suggestion_stats['priority_medium_cnt']} | {suggestion_stats['priority_medium_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['priority_low_cnt'] > 0:
pct = suggestion_stats['priority_low_amount'] / total_amount * 100
lines.append(f"| 低优先级 | {suggestion_stats['priority_low_cnt']} | {suggestion_stats['priority_low_amount']:.2f} | {pct:.1f}% |")
lines.append("")
# 价格区间分布
lines.append(f"### 价格区间分布 (按成本价)")
lines.append(f"| 价格区间 | 配件数 | 金额(元) | 占比 |")
lines.append(f"|----------|--------|----------|------|")
if suggestion_stats['price_low_cnt'] > 0:
pct = suggestion_stats['price_low_amount'] / total_amount * 100
lines.append(f"| 低价(<50元) | {suggestion_stats['price_low_cnt']} | {suggestion_stats['price_low_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['price_medium_cnt'] > 0:
pct = suggestion_stats['price_medium_amount'] / total_amount * 100
lines.append(f"| 中价(50-200元) | {suggestion_stats['price_medium_cnt']} | {suggestion_stats['price_medium_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['price_high_cnt'] > 0:
pct = suggestion_stats['price_high_amount'] / total_amount * 100
lines.append(f"| 高价(>200元) | {suggestion_stats['price_high_cnt']} | {suggestion_stats['price_high_amount']:.2f} | {pct:.1f}% |")
lines.append("")
# 周转频次分布
lines.append(f"### 周转频次分布 (按月均销量)")
lines.append(f"| 周转频次 | 配件数 | 金额(元) | 占比 |")
lines.append(f"|----------|--------|----------|------|")
if suggestion_stats['turnover_high_cnt'] > 0:
pct = suggestion_stats['turnover_high_amount'] / total_amount * 100
lines.append(f"| 高频(≥5件/月) | {suggestion_stats['turnover_high_cnt']} | {suggestion_stats['turnover_high_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['turnover_medium_cnt'] > 0:
pct = suggestion_stats['turnover_medium_amount'] / total_amount * 100
lines.append(f"| 中频(1-5件/月) | {suggestion_stats['turnover_medium_cnt']} | {suggestion_stats['turnover_medium_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['turnover_low_cnt'] > 0:
pct = suggestion_stats['turnover_low_amount'] / total_amount * 100
lines.append(f"| 低频(<1件/月) | {suggestion_stats['turnover_low_cnt']} | {suggestion_stats['turnover_low_amount']:.2f} | {pct:.1f}% |")
lines.append("")
# 补货金额分布
lines.append(f"### 单配件补货金额分布")
lines.append(f"| 补货规模 | 配件数 | 金额(元) | 占比 |")
lines.append(f"|----------|--------|----------|------|")
if suggestion_stats['replenish_large_cnt'] > 0:
pct = suggestion_stats['replenish_large_amount'] / total_amount * 100
lines.append(f"| 大额(≥5000元) | {suggestion_stats['replenish_large_cnt']} | {suggestion_stats['replenish_large_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['replenish_medium_cnt'] > 0:
pct = suggestion_stats['replenish_medium_amount'] / total_amount * 100
lines.append(f"| 中额(1000-5000元) | {suggestion_stats['replenish_medium_cnt']} | {suggestion_stats['replenish_medium_amount']:.2f} | {pct:.1f}% |")
if suggestion_stats['replenish_small_cnt'] > 0:
pct = suggestion_stats['replenish_small_amount'] / total_amount * 100
lines.append(f"| 小额(<1000元) | {suggestion_stats['replenish_small_cnt']} | {suggestion_stats['replenish_small_amount']:.2f} | {pct:.1f}% |")
return "\n".join(lines)
def generate_analysis_report_node(state: dict) -> dict:
"""
生成分析报告节点
输入: part_ratios, llm_suggestions, allocated_details, part_results
输出: analysis_report
"""
start_time = time.time()
task_no = state.get("task_no", "")
group_id = state.get("group_id", 0)
dealer_grouping_id = state.get("dealer_grouping_id", 0)
dealer_grouping_name = state.get("dealer_grouping_name", "")
brand_grouping_id = state.get("brand_grouping_id")
statistics_date = state.get("statistics_date", "")
part_ratios = state.get("part_ratios", [])
part_results = state.get("part_results", [])
allocated_details = state.get("allocated_details", [])
logger.info(f"[{task_no}] 开始生成分析报告: dealer={dealer_grouping_name}")
try:
# 计算风险统计
risk_stats = _calculate_risk_stats(part_ratios)
# 计算补货建议统计 (基于完整数据)
suggestion_stats = _calculate_suggestion_stats(part_results)
# 构建结构化建议汇总
suggestion_summary = _build_suggestion_summary(suggestion_stats)
# 加载 Prompt
prompt_template = _load_prompt("analysis_report.md")
# 填充 Prompt 变量
prompt = prompt_template.format(
dealer_grouping_id=dealer_grouping_id,
dealer_grouping_name=dealer_grouping_name,
statistics_date=statistics_date,
suggestion_summary=suggestion_summary,
shortage_cnt=risk_stats["shortage_cnt"],
shortage_amount=f"{risk_stats['shortage_amount']:.2f}",
stagnant_cnt=risk_stats["stagnant_cnt"],
stagnant_amount=f"{risk_stats['stagnant_amount']:.2f}",
low_freq_cnt=risk_stats["low_freq_cnt"],
low_freq_amount="0.00", # 低频件无库存
)
# 调用 LLM
llm_client = get_llm_client()
response = llm_client.invoke(
messages=[HumanMessage(content=prompt)],
)
# 解析 JSON 响应
response_text = response.content.strip()
# 移除可能的 markdown 代码块
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1])
report_data = json.loads(response_text)
# 复用已计算的统计数据
total_suggest_cnt = suggestion_stats["total_suggest_cnt"]
total_suggest_amount = suggestion_stats["total_suggest_amount"]
execution_time_ms = int((time.time() - start_time) * 1000)
# 创建报告对象
# 新 prompt 字段名映射到现有数据库字段:
# overall_assessment -> replenishment_insights
# risk_alerts -> urgency_assessment
# procurement_strategy -> strategy_recommendations
# expected_impact -> expected_outcomes
# execution_guide 已移除,置为 None
report = AnalysisReport(
task_no=task_no,
group_id=group_id,
dealer_grouping_id=dealer_grouping_id,
dealer_grouping_name=dealer_grouping_name,
brand_grouping_id=brand_grouping_id,
report_type="replenishment",
replenishment_insights=report_data.get("overall_assessment"),
urgency_assessment=report_data.get("risk_alerts"),
strategy_recommendations=report_data.get("procurement_strategy"),
execution_guide=None,
expected_outcomes=report_data.get("expected_impact"),
total_suggest_cnt=total_suggest_cnt,
total_suggest_amount=total_suggest_amount,
shortage_risk_cnt=risk_stats["shortage_cnt"],
excess_risk_cnt=risk_stats["stagnant_cnt"],
stagnant_cnt=risk_stats["stagnant_cnt"],
low_freq_cnt=risk_stats["low_freq_cnt"],
llm_provider=getattr(llm_client, "provider", ""),
llm_model=getattr(llm_client, "model", ""),
llm_tokens=response.usage.total_tokens,
execution_time_ms=execution_time_ms,
statistics_date=statistics_date,
)
# 保存到数据库
result_writer = ResultWriter()
try:
result_writer.save_analysis_report(report)
finally:
result_writer.close()
logger.info(
f"[{task_no}] 分析报告生成完成: "
f"shortage={risk_stats['shortage_cnt']}, "
f"stagnant={risk_stats['stagnant_cnt']}, "
f"time={execution_time_ms}ms"
)
return {
"analysis_report": report.to_dict(),
"end_time": time.time(),
}
except Exception as e:
logger.error(f"[{task_no}] 分析报告生成失败: {e}", exc_info=True)
# 返回空报告,不中断整个流程
return {
"analysis_report": {
"error": str(e),
"task_no": task_no,
},
"end_time": time.time(),
}