analysis_report_node.py 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
"""
分析报告生成节点

在补货建议工作流的最后一个节点执行,生成结构化分析报告
"""

import logging
import time
import json
import os
from typing import Dict, Any
from decimal import Decimal
from datetime import datetime

from langchain_core.messages import HumanMessage

from ..llm import get_llm_client
from ..models import AnalysisReport
from ..services.result_writer import ResultWriter

logger = logging.getLogger(__name__)


def _load_prompt(filename: str) -> str:
    """从prompts目录加载提示词文件"""
    prompts_dir = os.path.join(
        os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))),
        "prompts"
    )
    filepath = os.path.join(prompts_dir, filename)
    
    if not os.path.exists(filepath):
        raise FileNotFoundError(f"Prompt文件未找到: {filepath}")
    
    with open(filepath, "r", encoding="utf-8") as f:
        return f.read()


def _calculate_suggestion_stats(part_results: list) -> dict:
    """
    基于完整数据计算补货建议统计
    
    统计维度:
    1. 总体统计:总数量、总金额
    2. 优先级分布:高/中/低优先级配件数及金额
    3. 价格区间分布:低价/中价/高价配件分布
    4. 周转频次分布:高频/中频/低频配件分布
    5. 补货规模分布:大额/中额/小额补货配件分布
    """
    stats = {
        # 总体统计
        "total_parts_cnt": 0,
        "total_suggest_cnt": 0,
        "total_suggest_amount": Decimal("0"),
        
        # 优先级分布: 1=高, 2=中, 3=低
        "priority_high_cnt": 0,
        "priority_high_amount": Decimal("0"),
        "priority_medium_cnt": 0,
        "priority_medium_amount": Decimal("0"),
        "priority_low_cnt": 0,
        "priority_low_amount": Decimal("0"),
        
        # 价格区间分布 (成本价)
        "price_low_cnt": 0,
        "price_low_amount": Decimal("0"),
        "price_medium_cnt": 0,
        "price_medium_amount": Decimal("0"),
        "price_high_cnt": 0,
        "price_high_amount": Decimal("0"),
        
        # 周转频次分布 (月均销量)
        "turnover_high_cnt": 0,
        "turnover_high_amount": Decimal("0"),
        "turnover_medium_cnt": 0,
        "turnover_medium_amount": Decimal("0"),
        "turnover_low_cnt": 0,
        "turnover_low_amount": Decimal("0"),
        
        # 补货金额分布
        "replenish_large_cnt": 0,
        "replenish_large_amount": Decimal("0"),
        "replenish_medium_cnt": 0,
        "replenish_medium_amount": Decimal("0"),
        "replenish_small_cnt": 0,
        "replenish_small_amount": Decimal("0"),
    }
    
    if not part_results:
        return stats
    
    for pr in part_results:
        # 兼容对象和字典两种形式
        if hasattr(pr, "total_suggest_cnt"):
            suggest_cnt = pr.total_suggest_cnt
            suggest_amount = pr.total_suggest_amount
            cost_price = pr.cost_price
            avg_sales = pr.total_avg_sales_cnt
            priority = pr.priority
        else:
            suggest_cnt = int(pr.get("total_suggest_cnt", 0))
            suggest_amount = Decimal(str(pr.get("total_suggest_amount", 0)))
            cost_price = Decimal(str(pr.get("cost_price", 0)))
            avg_sales = Decimal(str(pr.get("total_avg_sales_cnt", 0)))
            priority = int(pr.get("priority", 2))
        
        # 总体统计
        stats["total_parts_cnt"] += 1
        stats["total_suggest_cnt"] += suggest_cnt
        stats["total_suggest_amount"] += suggest_amount
        
        # 优先级分布
        if priority == 1:
            stats["priority_high_cnt"] += 1
            stats["priority_high_amount"] += suggest_amount
        elif priority == 2:
            stats["priority_medium_cnt"] += 1
            stats["priority_medium_amount"] += suggest_amount
        else:
            stats["priority_low_cnt"] += 1
            stats["priority_low_amount"] += suggest_amount
        
        # 价格区间分布: <50低价, 50-200中价, >200高价
        if cost_price < 50:
            stats["price_low_cnt"] += 1
            stats["price_low_amount"] += suggest_amount
        elif cost_price <= 200:
            stats["price_medium_cnt"] += 1
            stats["price_medium_amount"] += suggest_amount
        else:
            stats["price_high_cnt"] += 1
            stats["price_high_amount"] += suggest_amount
        
        # 周转频次分布: 月均销量 >=5高频, 1-5中频, <1低频
        if avg_sales >= 5:
            stats["turnover_high_cnt"] += 1
            stats["turnover_high_amount"] += suggest_amount
        elif avg_sales >= 1:
            stats["turnover_medium_cnt"] += 1
            stats["turnover_medium_amount"] += suggest_amount
        else:
            stats["turnover_low_cnt"] += 1
            stats["turnover_low_amount"] += suggest_amount
        
        # 补货金额分布: >=5000大额, 1000-5000中额, <1000小额
        if suggest_amount >= 5000:
            stats["replenish_large_cnt"] += 1
            stats["replenish_large_amount"] += suggest_amount
        elif suggest_amount >= 1000:
            stats["replenish_medium_cnt"] += 1
            stats["replenish_medium_amount"] += suggest_amount
        else:
            stats["replenish_small_cnt"] += 1
            stats["replenish_small_amount"] += suggest_amount
    
    return stats


def _calculate_risk_stats(part_ratios: list) -> dict:
    """计算风险统计数据"""
    stats = {
        "shortage_cnt": 0,
        "shortage_amount": Decimal("0"),
        "stagnant_cnt": 0,
        "stagnant_amount": Decimal("0"),
        "low_freq_cnt": 0,
        "low_freq_amount": Decimal("0"),
    }
    
    for pr in part_ratios:
        valid_storage = Decimal(str(pr.get("valid_storage_cnt", 0) or 0))
        avg_sales = Decimal(str(pr.get("avg_sales_cnt", 0) or 0))
        out_stock = Decimal(str(pr.get("out_stock_cnt", 0) or 0))
        cost_price = Decimal(str(pr.get("cost_price", 0) or 0))
        
        # 呆滞件: 有库存但90天无出库
        if valid_storage > 0 and out_stock == 0:
            stats["stagnant_cnt"] += 1
            stats["stagnant_amount"] += valid_storage * cost_price
        
        # 低频件: 无库存且月均销量<1
        elif valid_storage == 0 and avg_sales < 1:
            stats["low_freq_cnt"] += 1
        
        # 缺货件: 无库存且月均销量>=1
        elif valid_storage == 0 and avg_sales >= 1:
            stats["shortage_cnt"] += 1
            # 缺货损失估算:月均销量 * 成本价
            stats["shortage_amount"] += avg_sales * cost_price
    
    return stats


def _build_suggestion_summary(suggestion_stats: dict) -> str:
    """
    基于预计算的统计数据构建结构化补货建议摘要
    
    摘要包含:
    - 补货总体规模
    - 优先级分布
    - 价格区间分布
    - 周转频次分布
    - 补货金额分布
    """
    if suggestion_stats["total_parts_cnt"] == 0:
        return "暂无补货建议"
    
    lines = []
    
    # 总体规模
    lines.append(f"### 补货总体规模")
    lines.append(f"- 涉及配件种类: {suggestion_stats['total_parts_cnt']}种")
    lines.append(f"- 建议补货总数量: {suggestion_stats['total_suggest_cnt']}件")
    lines.append(f"- 建议补货总金额: {suggestion_stats['total_suggest_amount']:.2f}元")
    lines.append("")
    
    # 优先级分布
    lines.append(f"### 优先级分布")
    lines.append(f"| 优先级 | 配件数 | 金额(元) | 占比 |")
    lines.append(f"|--------|--------|----------|------|")
    total_amount = suggestion_stats['total_suggest_amount'] or Decimal("1")
    
    if suggestion_stats['priority_high_cnt'] > 0:
        pct = suggestion_stats['priority_high_amount'] / total_amount * 100
        lines.append(f"| 高优先级 | {suggestion_stats['priority_high_cnt']} | {suggestion_stats['priority_high_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['priority_medium_cnt'] > 0:
        pct = suggestion_stats['priority_medium_amount'] / total_amount * 100
        lines.append(f"| 中优先级 | {suggestion_stats['priority_medium_cnt']} | {suggestion_stats['priority_medium_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['priority_low_cnt'] > 0:
        pct = suggestion_stats['priority_low_amount'] / total_amount * 100
        lines.append(f"| 低优先级 | {suggestion_stats['priority_low_cnt']} | {suggestion_stats['priority_low_amount']:.2f} | {pct:.1f}% |")
    lines.append("")
    
    # 价格区间分布
    lines.append(f"### 价格区间分布 (按成本价)")
    lines.append(f"| 价格区间 | 配件数 | 金额(元) | 占比 |")
    lines.append(f"|----------|--------|----------|------|")
    if suggestion_stats['price_low_cnt'] > 0:
        pct = suggestion_stats['price_low_amount'] / total_amount * 100
        lines.append(f"| 低价(<50元) | {suggestion_stats['price_low_cnt']} | {suggestion_stats['price_low_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['price_medium_cnt'] > 0:
        pct = suggestion_stats['price_medium_amount'] / total_amount * 100
        lines.append(f"| 中价(50-200元) | {suggestion_stats['price_medium_cnt']} | {suggestion_stats['price_medium_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['price_high_cnt'] > 0:
        pct = suggestion_stats['price_high_amount'] / total_amount * 100
        lines.append(f"| 高价(>200元) | {suggestion_stats['price_high_cnt']} | {suggestion_stats['price_high_amount']:.2f} | {pct:.1f}% |")
    lines.append("")
    
    # 周转频次分布
    lines.append(f"### 周转频次分布 (按月均销量)")
    lines.append(f"| 周转频次 | 配件数 | 金额(元) | 占比 |")
    lines.append(f"|----------|--------|----------|------|")
    if suggestion_stats['turnover_high_cnt'] > 0:
        pct = suggestion_stats['turnover_high_amount'] / total_amount * 100
        lines.append(f"| 高频(≥5件/月) | {suggestion_stats['turnover_high_cnt']} | {suggestion_stats['turnover_high_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['turnover_medium_cnt'] > 0:
        pct = suggestion_stats['turnover_medium_amount'] / total_amount * 100
        lines.append(f"| 中频(1-5件/月) | {suggestion_stats['turnover_medium_cnt']} | {suggestion_stats['turnover_medium_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['turnover_low_cnt'] > 0:
        pct = suggestion_stats['turnover_low_amount'] / total_amount * 100
        lines.append(f"| 低频(<1件/月) | {suggestion_stats['turnover_low_cnt']} | {suggestion_stats['turnover_low_amount']:.2f} | {pct:.1f}% |")
    lines.append("")
    
    # 补货金额分布
    lines.append(f"### 单配件补货金额分布")
    lines.append(f"| 补货规模 | 配件数 | 金额(元) | 占比 |")
    lines.append(f"|----------|--------|----------|------|")
    if suggestion_stats['replenish_large_cnt'] > 0:
        pct = suggestion_stats['replenish_large_amount'] / total_amount * 100
        lines.append(f"| 大额(≥5000元) | {suggestion_stats['replenish_large_cnt']} | {suggestion_stats['replenish_large_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['replenish_medium_cnt'] > 0:
        pct = suggestion_stats['replenish_medium_amount'] / total_amount * 100
        lines.append(f"| 中额(1000-5000元) | {suggestion_stats['replenish_medium_cnt']} | {suggestion_stats['replenish_medium_amount']:.2f} | {pct:.1f}% |")
    if suggestion_stats['replenish_small_cnt'] > 0:
        pct = suggestion_stats['replenish_small_amount'] / total_amount * 100
        lines.append(f"| 小额(<1000元) | {suggestion_stats['replenish_small_cnt']} | {suggestion_stats['replenish_small_amount']:.2f} | {pct:.1f}% |")
    
    return "\n".join(lines)


def generate_analysis_report_node(state: dict) -> dict:
    """
    生成分析报告节点
    
    输入: part_ratios, llm_suggestions, allocated_details, part_results
    输出: analysis_report
    """
    start_time = time.time()
    
    task_no = state.get("task_no", "")
    group_id = state.get("group_id", 0)
    dealer_grouping_id = state.get("dealer_grouping_id", 0)
    dealer_grouping_name = state.get("dealer_grouping_name", "")
    brand_grouping_id = state.get("brand_grouping_id")
    statistics_date = state.get("statistics_date", "")
    
    part_ratios = state.get("part_ratios", [])
    part_results = state.get("part_results", [])
    allocated_details = state.get("allocated_details", [])
    
    logger.info(f"[{task_no}] 开始生成分析报告: dealer={dealer_grouping_name}")
    
    try:
        # 计算风险统计
        risk_stats = _calculate_risk_stats(part_ratios)
        
        # 计算补货建议统计 (基于完整数据)
        suggestion_stats = _calculate_suggestion_stats(part_results)
        
        # 构建结构化建议汇总
        suggestion_summary = _build_suggestion_summary(suggestion_stats)
        
        # 加载 Prompt
        prompt_template = _load_prompt("analysis_report.md")
        
        # 填充 Prompt 变量
        prompt = prompt_template.format(
            dealer_grouping_id=dealer_grouping_id,
            dealer_grouping_name=dealer_grouping_name,
            statistics_date=statistics_date,
            suggestion_summary=suggestion_summary,
            shortage_cnt=risk_stats["shortage_cnt"],
            shortage_amount=f"{risk_stats['shortage_amount']:.2f}",
            stagnant_cnt=risk_stats["stagnant_cnt"],
            stagnant_amount=f"{risk_stats['stagnant_amount']:.2f}",
            low_freq_cnt=risk_stats["low_freq_cnt"],
            low_freq_amount="0.00",  # 低频件无库存
        )
        
        # 调用 LLM
        llm_client = get_llm_client()
        response = llm_client.invoke(
            messages=[HumanMessage(content=prompt)],
        )
        
        # 解析 JSON 响应
        response_text = response.content.strip()
        # 移除可能的 markdown 代码块
        if response_text.startswith("```"):
            lines = response_text.split("\n")
            response_text = "\n".join(lines[1:-1])
        
        report_data = json.loads(response_text)
        
        # 复用已计算的统计数据
        total_suggest_cnt = suggestion_stats["total_suggest_cnt"]
        total_suggest_amount = suggestion_stats["total_suggest_amount"]
        
        execution_time_ms = int((time.time() - start_time) * 1000)
        
        # 创建报告对象
        # 新 prompt 字段名映射到现有数据库字段:
        # overall_assessment -> replenishment_insights
        # risk_alerts -> urgency_assessment
        # procurement_strategy -> strategy_recommendations
        # expected_impact -> expected_outcomes
        # execution_guide 已移除,置为 None
        report = AnalysisReport(
            task_no=task_no,
            group_id=group_id,
            dealer_grouping_id=dealer_grouping_id,
            dealer_grouping_name=dealer_grouping_name,
            brand_grouping_id=brand_grouping_id,
            report_type="replenishment",
            replenishment_insights=report_data.get("overall_assessment"),
            urgency_assessment=report_data.get("risk_alerts"),
            strategy_recommendations=report_data.get("procurement_strategy"),
            execution_guide=None,
            expected_outcomes=report_data.get("expected_impact"),
            total_suggest_cnt=total_suggest_cnt,
            total_suggest_amount=total_suggest_amount,
            shortage_risk_cnt=risk_stats["shortage_cnt"],
            excess_risk_cnt=risk_stats["stagnant_cnt"],
            stagnant_cnt=risk_stats["stagnant_cnt"],
            low_freq_cnt=risk_stats["low_freq_cnt"],
            llm_provider=getattr(llm_client, "provider", ""),
            llm_model=getattr(llm_client, "model", ""),
            llm_tokens=response.usage.total_tokens,
            execution_time_ms=execution_time_ms,
            statistics_date=statistics_date,
        )
        
        # 保存到数据库
        result_writer = ResultWriter()
        try:
            result_writer.save_analysis_report(report)
        finally:
            result_writer.close()
        
        logger.info(
            f"[{task_no}] 分析报告生成完成: "
            f"shortage={risk_stats['shortage_cnt']}, "
            f"stagnant={risk_stats['stagnant_cnt']}, "
            f"time={execution_time_ms}ms"
        )
        
        return {
            "analysis_report": report.to_dict(),
            "end_time": time.time(),
        }
        
    except Exception as e:
        logger.error(f"[{task_no}] 分析报告生成失败: {e}", exc_info=True)
        
        # 返回空报告,不中断整个流程
        return {
            "analysis_report": {
                "error": str(e),
                "task_no": task_no,
            },
            "end_time": time.time(),
        }