nodes.py 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
"""
LangGraph Agent 节点实现

重构版本:直接使用 part_ratio 数据 + SQL Agent
"""

import logging
import time
import json
from typing import Dict, List
from decimal import Decimal
from datetime import datetime

from langchain_core.messages import SystemMessage, HumanMessage

from .state import AgentState
from .sql_agent import SQLAgent
from ..models import ReplenishmentSuggestion, PartAnalysisResult
from ..llm import get_llm_client
from ..services import DataService
from ..services.result_writer import ResultWriter
from ..models import ReplenishmentDetail, TaskExecutionLog, LogStatus, ReplenishmentPartSummary

logger = logging.getLogger(__name__)


def _load_prompt(filename: str) -> str:
    """从prompts目录加载提示词文件"""
    import os
    # 从 src/fw_pms_ai/agent/nodes.py 向上4层到达项目根目录
    prompt_path = os.path.join(
        os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))),
        "prompts", filename
    )
    try:
        with open(prompt_path, "r", encoding="utf-8") as f:
            return f.read()
    except FileNotFoundError:
        logger.warning(f"Prompt文件未找到: {prompt_path}")
        return ""



def fetch_part_ratio_node(state: AgentState) -> AgentState:
    """
    节点1: 获取 part_ratio 数据
    直接通过 dealer_grouping_id 从 part_ratio 表获取配件库销比数据
    """
    logger.info(f"[FetchPartRatio] ========== 开始获取数据 ==========")
    logger.info(
        f"[FetchPartRatio] group_id={state['group_id']}, "
        f"dealer_grouping_id={state['dealer_grouping_id']}, "
        f"date={state['statistics_date']}"
    )
    
    start_time = time.time()
    
    sql_agent = SQLAgent()
    
    try:
        # 直接使用 dealer_grouping_id 获取 part_ratio 数据
        part_ratios = sql_agent.fetch_part_ratios(
            group_id=state["group_id"],
            dealer_grouping_id=state["dealer_grouping_id"],
            statistics_date=state["statistics_date"],
        )
        
        execution_time = int((time.time() - start_time) * 1000)
        
        # 记录执行日志
        log_entry = {
            "step_name": "fetch_part_ratio",
            "step_order": 1,
            "status": LogStatus.SUCCESS if part_ratios else LogStatus.SKIPPED,
            "input_data": json.dumps({
                "dealer_grouping_id": state["dealer_grouping_id"],
                "statistics_date": state["statistics_date"],
            }),
            "output_data": json.dumps({"part_ratios_count": len(part_ratios)}),
            "execution_time_ms": execution_time,
            "start_time": datetime.now().isoformat(),
        }
        
        logger.info(
            f"[FetchPartRatio] 数据获取完成: part_ratios={len(part_ratios)}, "
            f"耗时={execution_time}ms"
        )
        
        return {
            **state,
            "part_ratios": part_ratios,
            "sql_execution_logs": [log_entry],
            "current_node": "fetch_part_ratio",
            "next_node": "sql_agent",
        }
        
    finally:
        sql_agent.close()



def sql_agent_node(state: AgentState) -> AgentState:
    """
    节点2: SQL Agent 分析和生成建议
    按 part_code 分组,逐个配件分析各门店的补货需求
    """
    part_ratios = state.get("part_ratios", [])


    logger.info(f"[SQLAgent] 开始分析: part_ratios={len(part_ratios)}")
    
    start_time = time.time()
    retry_count = state.get("sql_retry_count", 0)
    
    if not part_ratios:
        logger.warning("[SQLAgent] 无配件数据可分析")
        
        log_entry = {
            "step_name": "sql_agent",
            "step_order": 2,
            "status": LogStatus.SKIPPED,
            "error_message": "无配件数据",
            "execution_time_ms": int((time.time() - start_time) * 1000),
        }
        
        return {
            **state,
            "llm_suggestions": [],
            "llm_analysis_summary": "无配件数据可分析",
            "sql_execution_logs": [log_entry],
            "current_node": "sql_agent",
            "next_node": "allocate_budget",
        }
    
    sql_agent = SQLAgent()
    
    try:
        # 计算基准库销比(仅用于记录,不影响LLM建议)
        total_valid_storage = sum(
            Decimal(str(p.get("valid_storage_cnt", 0) or 0))
            for p in part_ratios
        )
        total_avg_sales = sum(
            Decimal(str(p.get("avg_sales_cnt", 0) or 0))
            for p in part_ratios
        )
        
        if total_avg_sales > 0:
            base_ratio = total_valid_storage / total_avg_sales
        else:
            base_ratio = Decimal("0")
        
        logger.info(
            f"[SQLAgent] 当前库销比: 总库存={total_valid_storage}, "
            f"总销量={total_avg_sales}, 库销比={base_ratio}"
        )
        
        # 定义批处理回调
        # 由于 models 中没有 ResultWriter 的引用,这里尝试直接从 services 导入或实例化
        # 为避免循环导入,我们在函数内导入
        from ..services import ResultWriter as WriterService
        writer = WriterService()
        
        # 1. 任务开始时清理旧数据(确保重试时不会产生重复数据)
        # logger.info(f"[SQLAgent] 清理旧建议数据: task_no={state['task_no']}")
        # writer.clear_llm_suggestions(state["task_no"])

        # 2. 移除批处理回调(不再过程写入,改为最后统一写入)
        save_batch_callback = None

        # 使用分组分析生成补货建议(按 part_code 分组,逐个配件分析各门店需求)
        suggestions, part_results, llm_stats = sql_agent.analyze_parts_by_group(
            part_ratios=part_ratios,
            dealer_grouping_id=state["dealer_grouping_id"],
            dealer_grouping_name=state["dealer_grouping_name"],
            statistics_date=state["statistics_date"],
            target_ratio=base_ratio if base_ratio > 0 else Decimal("1.3"),
            limit=1,
            callback=save_batch_callback,
        )
        
        execution_time = int((time.time() - start_time) * 1000)
        
        # 记录执行日志
        log_entry = {
            "step_name": "sql_agent",
            "step_order": 2,
            "status": LogStatus.SUCCESS,
            "input_data": json.dumps({
                "part_ratios_count": len(part_ratios),
            }),
            "output_data": json.dumps({
                "suggestions_count": len(suggestions),
                "part_results_count": len(part_results),
                "base_ratio": float(base_ratio),
            }),
            "llm_tokens": llm_stats.get("prompt_tokens", 0) + llm_stats.get("completion_tokens", 0),
            "execution_time_ms": execution_time,
            "retry_count": retry_count,
        }
        
        logger.info(
            f"[SQLAgent] 分析完成: 建议数={len(suggestions)}, "
            f"配件汇总数={len(part_results)}, tokens={llm_stats}, 耗时={execution_time}ms"
        )
        
        return {
            **state,
            "base_ratio": base_ratio,
            "llm_suggestions": suggestions,
            "part_results": part_results,
            "llm_prompt_tokens": state.get("llm_prompt_tokens", 0) + llm_stats.get("prompt_tokens", 0),
            "llm_completion_tokens": state.get("llm_completion_tokens", 0) + llm_stats.get("completion_tokens", 0),
            "sql_execution_logs": [log_entry],
            "current_node": "sql_agent",
            "next_node": "allocate_budget",
        }
        
    except Exception as e:
        logger.error(f"[SQLAgent] 执行失败: {e}")
        
        log_entry = {
            "step_name": "sql_agent",
            "step_order": 2,
            "status": LogStatus.FAILED,
            "error_message": str(e),
            "retry_count": retry_count,
            "execution_time_ms": int((time.time() - start_time) * 1000),
        }
        
        # 检查是否需要重试
        if retry_count < 3:
            return {
                **state,
                "sql_retry_count": retry_count + 1,
                "sql_execution_logs": [log_entry],
                "current_node": "sql_agent",
                "next_node": "sql_agent",  # 重试
                "error_message": str(e),
            }
        
        return {
            **state,
            "llm_suggestions": [],
            "sql_execution_logs": [log_entry],
            "current_node": "sql_agent",
            "next_node": "allocate_budget",
            "error_message": str(e),
        }
        
    finally:
        sql_agent.close()


def allocate_budget_node(state: AgentState) -> AgentState:
    """
    节点3: 转换LLM建议为补货明细
    注意:不做预算截断,所有建议直接输出
    """
    logger.info(f"[AllocateBudget] 开始处理LLM建议")
    
    start_time = time.time()
    
    llm_suggestions = state.get("llm_suggestions", [])
    
    if not llm_suggestions:
        logger.warning("[AllocateBudget] 无LLM建议可处理")
        
        log_entry = {
            "step_name": "allocate_budget",
            "step_order": 3,
            "status": LogStatus.SKIPPED,
            "error_message": "无LLM建议",
            "execution_time_ms": int((time.time() - start_time) * 1000),
        }
        
        return {
            **state,
            "details": [],
            "sql_execution_logs": [log_entry],
            "current_node": "allocate_budget",
            "next_node": "end",
        }
    
    # 按优先级和库销比排序(优先级升序,库销比升序)
    sorted_suggestions = sorted(
        llm_suggestions,
        key=lambda x: (x.priority, float(x.current_ratio))
    )
    
    # 建立 part_code -> brand_grouping_id 映射,确保明细归属正确的品牌组合
    part_ratios = state.get("part_ratios", [])
    part_brand_map = {p.get("part_code"): p.get("brand_grouping_id") for p in part_ratios if p.get("part_code")}
    
    allocated_details = []
    total_amount = Decimal("0")
    
    # 转换所有建议为明细(包括不需要补货的配件,以便记录完整分析结果)
    for suggestion in sorted_suggestions:
        # 获取该配件对应的 brand_grouping_id
        bg_id = part_brand_map.get(suggestion.part_code)
        if bg_id is None:
            bg_id = state.get("brand_grouping_id")
            
        detail = ReplenishmentDetail(
            task_no=state["task_no"],
            group_id=state["group_id"],
            dealer_grouping_id=state["dealer_grouping_id"],
            brand_grouping_id=bg_id,
            shop_id=suggestion.shop_id,
            shop_name=suggestion.shop_name,
            part_code=suggestion.part_code,
            part_name=suggestion.part_name,
            unit=suggestion.unit,
            cost_price=suggestion.cost_price,
            base_ratio=state.get("base_ratio", Decimal("1.1")),
            current_ratio=suggestion.current_ratio,
            valid_storage_cnt=suggestion.current_storage_cnt,
            avg_sales_cnt=suggestion.avg_sales_cnt,
            suggest_cnt=suggestion.suggest_cnt,
            suggest_amount=suggestion.suggest_amount,
            suggestion_reason=suggestion.suggestion_reason,
            priority=suggestion.priority,
            llm_confidence=suggestion.confidence,
            statistics_date=state["statistics_date"],
        )
        # 计算预计库销比
        post_storage = detail.valid_storage_cnt + detail.suggest_cnt
        if post_storage <= 0 or detail.avg_sales_cnt <= 0:
            # 库存为0或销量为0时,库销比设为0
            detail.post_plan_ratio = Decimal("0")
        else:
            detail.post_plan_ratio = post_storage / detail.avg_sales_cnt
        
        allocated_details.append(detail)
        total_amount += suggestion.suggest_amount
    
    execution_time = int((time.time() - start_time) * 1000)
    
    # 记录执行日志
    log_entry = {
        "step_name": "allocate_budget",
        "step_order": 3,
        "status": LogStatus.SUCCESS,
        "input_data": json.dumps({
            "suggestions_count": len(llm_suggestions),
        }),
        "output_data": json.dumps({
            "details_count": len(allocated_details),
            "total_amount": float(total_amount),
        }),
        "execution_time_ms": execution_time,
    }
    
    logger.info(
        f"[AllocateBudget] 分配完成: 配件数={len(allocated_details)}, "
        f"金额={total_amount}"
    )
    
    # 保存结果到数据库
    try:
        writer = ResultWriter()
        
        # 0. 先清理旧数据(防止重试或重复执行时产生重复记录)
        writer.delete_details_by_task(state["task_no"])
        writer.delete_part_summaries_by_task(state["task_no"])
        logger.info(f"[AllocateBudget] 已清理旧数据: task_no={state['task_no']}")
        
        # 1. 保存补货明细
        if allocated_details:
            writer.save_details(allocated_details)
            logger.info(f"[AllocateBudget] 已保存 {len(allocated_details)} 条补货明细")
            
        # 2. 保存配件汇总
        part_results = state.get("part_results", [])
        if part_results:
            part_summaries = []
            for pr in part_results:
                summary = ReplenishmentPartSummary(
                    task_no=state["task_no"],
                    group_id=state["group_id"],
                    dealer_grouping_id=state["dealer_grouping_id"],
                    part_code=pr.part_code,
                    part_name=pr.part_name,
                    unit=pr.unit,
                    cost_price=pr.cost_price,
                    total_storage_cnt=pr.total_storage_cnt,
                    total_avg_sales_cnt=pr.total_avg_sales_cnt,
                    group_current_ratio=pr.group_current_ratio,
                    total_suggest_cnt=pr.total_suggest_cnt,
                    total_suggest_amount=pr.total_suggest_amount,
                    shop_count=pr.shop_count,
                    need_replenishment_shop_count=pr.need_replenishment_shop_count,
                    part_decision_reason=pr.part_decision_reason,
                    priority=pr.priority,
                    llm_confidence=pr.confidence,
                    statistics_date=state["statistics_date"],
                )
                part_summaries.append(summary)
            
            writer.save_part_summaries(part_summaries)
            logger.info(f"[AllocateBudget] 已保存 {len(part_summaries)} 条配件分析汇总")
            
        writer.close()
    except Exception as e:
        logger.error(f"[AllocateBudget] 保存结果失败: {e}")
        # 记录错误但不中断流程
        error_log = {
            "step_name": "allocate_budget",
            "step_order": 3,
            "status": LogStatus.FAILED,
            "error_message": f"保存结果失败: {str(e)}",
            "execution_time_ms": 0,
        }
        
        return {
            **state,
            "details": allocated_details,
            "sql_execution_logs": [log_entry, error_log],
            "current_node": "allocate_budget",
            "next_node": "end",
            "status": "success",
            "end_time": time.time(),
        }
    
    return {
        **state,
        "details": allocated_details,
        "sql_execution_logs": [log_entry],
        "current_node": "allocate_budget",
        "next_node": "end",
        "status": "success",
        "end_time": time.time(),
    }


def should_retry_sql(state: AgentState) -> str:
    """条件边: 判断是否需要重试SQL Agent"""
    next_node = state.get("next_node", "allocate_budget")
    retry_count = state.get("sql_retry_count", 0)
    
    if next_node == "sql_agent" and retry_count < 3:
        logger.info(f"[Routing] SQL Agent需要重试: retry_count={retry_count}")
        return "retry"
    
    return "continue"


def should_continue(state: AgentState) -> str:
    """条件边: 判断是否继续"""
    return state.get("next_node", "end")