analysis_report_node.py
8.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
分析报告生成节点
在补货建议工作流的最后一个节点执行,生成结构化分析报告
"""
import logging
import time
import json
import os
from typing import Dict, Any
from decimal import Decimal
from datetime import datetime
from langchain_core.messages import HumanMessage
from ..llm import get_llm_client
from ..models import AnalysisReport
from ..services.result_writer import ResultWriter
logger = logging.getLogger(__name__)
def _load_prompt(filename: str) -> str:
"""从prompts目录加载提示词文件"""
prompts_dir = os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))),
"prompts"
)
filepath = os.path.join(prompts_dir, filename)
if not os.path.exists(filepath):
raise FileNotFoundError(f"Prompt文件未找到: {filepath}")
with open(filepath, "r", encoding="utf-8") as f:
return f.read()
def _calculate_risk_stats(part_ratios: list) -> dict:
"""计算风险统计数据"""
stats = {
"shortage_cnt": 0,
"shortage_amount": Decimal("0"),
"stagnant_cnt": 0,
"stagnant_amount": Decimal("0"),
"low_freq_cnt": 0,
"low_freq_amount": Decimal("0"),
}
for pr in part_ratios:
valid_storage = Decimal(str(pr.get("valid_storage_cnt", 0) or 0))
avg_sales = Decimal(str(pr.get("avg_sales_cnt", 0) or 0))
out_stock = Decimal(str(pr.get("out_stock_cnt", 0) or 0))
cost_price = Decimal(str(pr.get("cost_price", 0) or 0))
# 呆滞件: 有库存但90天无出库
if valid_storage > 0 and out_stock == 0:
stats["stagnant_cnt"] += 1
stats["stagnant_amount"] += valid_storage * cost_price
# 低频件: 无库存且月均销量<1
elif valid_storage == 0 and avg_sales < 1:
stats["low_freq_cnt"] += 1
# 缺货件: 无库存且月均销量>=1
elif valid_storage == 0 and avg_sales >= 1:
stats["shortage_cnt"] += 1
# 缺货损失估算:月均销量 * 成本价
stats["shortage_amount"] += avg_sales * cost_price
return stats
def _build_suggestion_summary(part_results: list, allocated_details: list) -> str:
"""构建补货建议汇总文本"""
if not part_results and not allocated_details:
return "暂无补货建议"
lines = []
total_cnt = 0
total_amount = Decimal("0")
# 优先使用 part_results (配件级汇总)
if part_results:
for pr in part_results[:10]: # 只取前10个
if hasattr(pr, "part_code"):
lines.append(
f"- {pr.part_code} {pr.part_name}: "
f"建议{pr.total_suggest_cnt}件, "
f"金额{pr.total_suggest_amount:.2f}元, "
f"优先级{pr.priority}"
)
total_cnt += pr.total_suggest_cnt
total_amount += pr.total_suggest_amount
elif isinstance(pr, dict):
lines.append(
f"- {pr.get('part_code', '')} {pr.get('part_name', '')}: "
f"建议{pr.get('total_suggest_cnt', 0)}件, "
f"金额{pr.get('total_suggest_amount', 0):.2f}元"
)
lines.insert(0, f"**总计**: {total_cnt}件配件, 金额{total_amount:.2f}元\n")
return "\n".join(lines)
def generate_analysis_report_node(state: dict) -> dict:
"""
生成分析报告节点
输入: part_ratios, llm_suggestions, allocated_details, part_results
输出: analysis_report
"""
start_time = time.time()
task_no = state.get("task_no", "")
group_id = state.get("group_id", 0)
dealer_grouping_id = state.get("dealer_grouping_id", 0)
dealer_grouping_name = state.get("dealer_grouping_name", "")
brand_grouping_id = state.get("brand_grouping_id")
statistics_date = state.get("statistics_date", "")
part_ratios = state.get("part_ratios", [])
part_results = state.get("part_results", [])
allocated_details = state.get("allocated_details", [])
logger.info(f"[{task_no}] 开始生成分析报告: dealer={dealer_grouping_name}")
try:
# 计算风险统计
risk_stats = _calculate_risk_stats(part_ratios)
# 构建建议汇总
suggestion_summary = _build_suggestion_summary(part_results, allocated_details)
# 加载 Prompt
prompt_template = _load_prompt("analysis_report.md")
# 填充 Prompt 变量
prompt = prompt_template.format(
dealer_grouping_id=dealer_grouping_id,
dealer_grouping_name=dealer_grouping_name,
statistics_date=statistics_date,
suggestion_summary=suggestion_summary,
shortage_cnt=risk_stats["shortage_cnt"],
shortage_amount=f"{risk_stats['shortage_amount']:.2f}",
stagnant_cnt=risk_stats["stagnant_cnt"],
stagnant_amount=f"{risk_stats['stagnant_amount']:.2f}",
low_freq_cnt=risk_stats["low_freq_cnt"],
low_freq_amount="0.00", # 低频件无库存
)
# 调用 LLM
llm_client = get_llm_client()
response = llm_client.invoke(
messages=[HumanMessage(content=prompt)],
)
# 解析 JSON 响应
response_text = response.content.strip()
# 移除可能的 markdown 代码块
if response_text.startswith("```"):
lines = response_text.split("\n")
response_text = "\n".join(lines[1:-1])
report_data = json.loads(response_text)
# 计算统计信息
total_suggest_cnt = sum(
d.suggest_cnt if hasattr(d, "suggest_cnt") else d.get("suggest_cnt", 0)
for d in allocated_details
)
total_suggest_amount = sum(
d.suggest_amount if hasattr(d, "suggest_amount") else Decimal(str(d.get("suggest_amount", 0)))
for d in allocated_details
)
execution_time_ms = int((time.time() - start_time) * 1000)
# 创建报告对象
# 新 prompt 字段名映射到现有数据库字段:
# overall_assessment -> replenishment_insights
# risk_alerts -> urgency_assessment
# procurement_strategy -> strategy_recommendations
# expected_impact -> expected_outcomes
# execution_guide 已移除,置为 None
report = AnalysisReport(
task_no=task_no,
group_id=group_id,
dealer_grouping_id=dealer_grouping_id,
dealer_grouping_name=dealer_grouping_name,
brand_grouping_id=brand_grouping_id,
report_type="replenishment",
replenishment_insights=report_data.get("overall_assessment"),
urgency_assessment=report_data.get("risk_alerts"),
strategy_recommendations=report_data.get("procurement_strategy"),
execution_guide=None,
expected_outcomes=report_data.get("expected_impact"),
total_suggest_cnt=total_suggest_cnt,
total_suggest_amount=total_suggest_amount,
shortage_risk_cnt=risk_stats["shortage_cnt"],
excess_risk_cnt=risk_stats["stagnant_cnt"],
stagnant_cnt=risk_stats["stagnant_cnt"],
low_freq_cnt=risk_stats["low_freq_cnt"],
llm_provider=getattr(llm_client, "provider", ""),
llm_model=getattr(llm_client, "model", ""),
llm_tokens=response.usage.total_tokens,
execution_time_ms=execution_time_ms,
statistics_date=statistics_date,
)
# 保存到数据库
result_writer = ResultWriter()
try:
result_writer.save_analysis_report(report)
finally:
result_writer.close()
logger.info(
f"[{task_no}] 分析报告生成完成: "
f"shortage={risk_stats['shortage_cnt']}, "
f"stagnant={risk_stats['stagnant_cnt']}, "
f"time={execution_time_ms}ms"
)
return {
"analysis_report": report.to_dict(),
"end_time": time.time(),
}
except Exception as e:
logger.error(f"[{task_no}] 分析报告生成失败: {e}", exc_info=True)
# 返回空报告,不中断整个流程
return {
"analysis_report": {
"error": str(e),
"task_no": task_no,
},
"end_time": time.time(),
}