analyzer.py 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
"""
配件分析器模块

负责配件分组分析、LLM 调用和结果解析
"""

import logging
import time
import json
import concurrent.futures
from typing import Any, Dict, List, Optional, Tuple
from decimal import Decimal

from langchain_core.messages import SystemMessage, HumanMessage

from .prompts import (
    load_prompt,
    SUGGESTION_PROMPT,
    SUGGESTION_SYSTEM_PROMPT,
    PART_SHOP_ANALYSIS_PROMPT,
    PART_SHOP_ANALYSIS_SYSTEM_PROMPT,
)
from ...llm import get_llm_client
from ...models import ReplenishmentSuggestion, PartAnalysisResult

logger = logging.getLogger(__name__)


class PartAnalyzer:
    """配件分析器 - 负责 LLM 分析和结果解析"""

    def __init__(self):
        self._llm = get_llm_client()

    def group_parts_by_code(self, part_ratios: List[Dict]) -> Dict[str, List[Dict]]:
        """
        按配件编码分组

        Args:
            part_ratios: 配件库销比数据列表

        Returns:
            {part_code: [各门店数据列表]}
        """
        grouped = {}
        for pr in part_ratios:
            part_code = pr.get("part_code", "")
            if not part_code:
                continue
            if part_code not in grouped:
                grouped[part_code] = []
            grouped[part_code].append(pr)

        logger.info(f"配件分组完成: 总配件数={len(grouped)}, 总记录数={len(part_ratios)}")
        return grouped

    def generate_suggestions(
        self,
        part_data: List[Dict],
        dealer_grouping_id: int,
        dealer_grouping_name: str,
        statistics_date: str,
    ) -> Tuple[List[ReplenishmentSuggestion], Dict]:
        """
        生成补货建议

        Args:
            part_data: 配件数据
            dealer_grouping_id: 商家组合ID
            dealer_grouping_name: 商家组合名称
            statistics_date: 统计日期

        Returns:
            (补货建议列表, LLM统计信息)
        """
        if not part_data:
            return [], {"prompt_tokens": 0, "completion_tokens": 0}

        # 将所有数据传给LLM分析
        part_data_str = json.dumps(part_data, ensure_ascii=False, indent=2, default=str)

        prompt = SUGGESTION_PROMPT.format(
            dealer_grouping_id=dealer_grouping_id,
            dealer_grouping_name=dealer_grouping_name,
            statistics_date=statistics_date,
            part_data=part_data_str,
        )

        messages = [
            SystemMessage(content=SUGGESTION_SYSTEM_PROMPT),
            HumanMessage(content=prompt),
        ]

        response = self._llm.invoke(messages)
        content = response.content.strip()

        suggestions = []
        try:
            # 提取JSON
            if "```json" in content:
                content = content.split("```json")[1].split("```")[0].strip()
            elif "```" in content:
                content = content.split("```")[1].split("```")[0].strip()

            raw_suggestions = json.loads(content)

            for item in raw_suggestions:
                suggestions.append(ReplenishmentSuggestion(
                    shop_id=item.get("shop_id", 0),
                    shop_name=item.get("shop_name", ""),
                    part_code=item.get("part_code", ""),
                    part_name=item.get("part_name", ""),
                    unit=item.get("unit", ""),
                    cost_price=Decimal(str(item.get("cost_price", 0))),
                    current_storage_cnt=Decimal(str(item.get("current_storage_cnt", 0))),
                    avg_sales_cnt=Decimal(str(item.get("avg_sales_cnt", 0))),
                    current_ratio=Decimal(str(item.get("current_ratio", 0))),
                    suggest_cnt=int(item.get("suggest_cnt", 0)),
                    suggest_amount=Decimal(str(item.get("suggest_amount", 0))),
                    suggestion_reason=item.get("suggestion_reason", ""),
                    priority=int(item.get("priority", 2)),
                    confidence=float(item.get("confidence", 0.8)),
                ))

        except json.JSONDecodeError as e:
            logger.error(f"解析LLM建议失败: {e}")

        llm_stats = {
            "prompt_tokens": response.usage.prompt_tokens if response.usage else 0,
            "completion_tokens": response.usage.completion_tokens if response.usage else 0,
        }

        logger.info(f"生成补货建议: {len(suggestions)}条")
        return suggestions, llm_stats

    def analyze_parts_by_group(
        self,
        part_ratios: List[Dict],
        dealer_grouping_id: int,
        dealer_grouping_name: str,
        statistics_date: str,
        target_ratio: Decimal = Decimal("1.3"),
        limit: Optional[int] = None,
        callback: Optional[Any] = None,
    ) -> Tuple[List[ReplenishmentSuggestion], List[PartAnalysisResult], Dict]:
        """
        按配件分组分析补货建议

        Args:
            part_ratios: 配件库销比数据列表
            dealer_grouping_id: 商家组合ID
            dealer_grouping_name: 商家组合名称
            statistics_date: 统计日期
            target_ratio: 目标库销比(基准库销比)
            limit: 测试限制数量
            callback: 批处理回调函数(suggestions)

        Returns:
            (补货建议列表, 配件分析结果列表, LLM统计信息)
        """
        if not part_ratios:
            return [], [], {"prompt_tokens": 0, "completion_tokens": 0}

        # 按 part_code 分组
        grouped_parts = self.group_parts_by_code(part_ratios)

        # 应用限制
        all_part_codes = list(grouped_parts.keys())
        if limit and limit > 0:
            logger.warning(f"启用测试限制: 仅处理前 {limit} 个配件 (总数: {len(all_part_codes)})")
            all_part_codes = all_part_codes[:limit]

        all_suggestions = []
        all_part_results: List[PartAnalysisResult] = []
        total_prompt_tokens = 0
        total_completion_tokens = 0

        system_prompt = PART_SHOP_ANALYSIS_SYSTEM_PROMPT
        user_prompt_template = PART_SHOP_ANALYSIS_PROMPT

        # 将目标库销比格式化到 Prompt 中
        target_ratio_str = f"{float(target_ratio):.2f}"
        system_prompt = system_prompt.replace("{target_ratio}", target_ratio_str)

        def process_single_part(part_code: str) -> Tuple[PartAnalysisResult, List[ReplenishmentSuggestion], int, int]:
            """处理单个配件"""
            shop_data_list = grouped_parts[part_code]
            if not shop_data_list:
                return None, [], 0, 0

            # 获取配件基本信息
            first_item = shop_data_list[0]
            part_name = first_item.get("part_name", "")
            cost_price = first_item.get("cost_price", 0)
            unit = first_item.get("unit", "")

            # 构建门店数据
            shop_data_str = json.dumps(shop_data_list, ensure_ascii=False, indent=2, default=str)

            prompt = user_prompt_template.format(
                part_code=part_code,
                part_name=part_name,
                cost_price=cost_price,
                unit=unit,
                dealer_grouping_name=dealer_grouping_name,
                statistics_date=statistics_date,
                shop_data=shop_data_str,
                target_ratio=target_ratio_str,
            )

            messages = [
                SystemMessage(content=system_prompt),
                HumanMessage(content=prompt),
            ]

            p_tokens = 0
            c_tokens = 0

            try:
                response = self._llm.invoke(messages)
                content = response.content.strip()

                if response.usage:
                    p_tokens = response.usage.prompt_tokens
                    c_tokens = response.usage.completion_tokens

                # 解析 LLM 响应
                part_result, suggestions = self._parse_part_analysis_response(
                    content, part_code, part_name, unit, cost_price, shop_data_list, target_ratio
                )

                # 请求间延迟,避免触发速率限制
                time.sleep(0.5)

                return part_result, suggestions, p_tokens, c_tokens

            except Exception as e:
                logger.error(f"分析配件 {part_code} 失败: {e}")
                # 失败后等待更长时间再继续
                time.sleep(2.0)
                return None, [], 0, 0

        # 并发执行
        batch_size = 10
        current_batch = []
        finished_count = 0
        total_count = len(all_part_codes)
        # 最大并发数150,但不超过配件数量
        max_workers = min(150, total_count) if total_count > 0 else 1

        logger.info(f"开始并行分析: workers={max_workers}, parts={total_count}")

        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            # 提交所有任务
            future_to_part = {
                executor.submit(process_single_part, code): code
                for code in all_part_codes
            }

            for future in concurrent.futures.as_completed(future_to_part):
                part_code = future_to_part[future]
                finished_count += 1

                try:
                    part_result, suggestions, p_t, c_t = future.result()

                    if part_result:
                        all_part_results.append(part_result)
                    if suggestions:
                        all_suggestions.extend(suggestions)
                        current_batch.extend(suggestions)

                    total_prompt_tokens += p_t
                    total_completion_tokens += c_t

                    # 批量回调处理
                    if callback and len(current_batch) >= batch_size:
                        try:
                            callback(current_batch)
                            logger.info(f"批次落库: {len(current_batch)} 条")
                            current_batch = []
                        except Exception as e:
                            logger.error(f"回调执行失败: {e}")

                except Exception as e:
                    logger.error(f"任务执行异常 {part_code}: {e}")

                if finished_count % 10 == 0:
                    logger.info(f"进度: {finished_count}/{total_count} ({(finished_count/total_count*100):.1f}%)")

        # 处理剩余批次
        if callback and current_batch:
            try:
                callback(current_batch)
                logger.info(f"最后批次落库: {len(current_batch)} 条")
            except Exception as e:
                logger.error(f"最后回调执行失败: {e}")

        llm_stats = {
            "prompt_tokens": total_prompt_tokens,
            "completion_tokens": total_completion_tokens,
        }

        logger.info(
            f"分组分析完成: 配件数={len(grouped_parts)}, "
            f"配件汇总数={len(all_part_results)}, "
            f"建议数={len(all_suggestions)}, tokens={total_prompt_tokens + total_completion_tokens}"
        )
        return all_suggestions, all_part_results, llm_stats

    def _calculate_priority_by_ratio(
        self,
        current_ratio: Decimal,
        avg_sales: Decimal,
        target_ratio: Decimal,
    ) -> int:
        """
        根据库销比计算优先级

        规则:
        - 库销比 < 0.5 且月均销量 >= 1: 高优先级 (1)
        - 库销比 0.5-1.0 且月均销量 >= 1: 中优先级 (2)
        - 库销比 1.0-target_ratio 且月均销量 >= 1: 低优先级 (3)
        - 其他情况: 无需补货 (0)

        Args:
            current_ratio: 当前库销比
            avg_sales: 月均销量
            target_ratio: 目标库销比

        Returns:
            优先级 (0=无需补货, 1=高, 2=中, 3=低)
        """
        if avg_sales < 1:
            return 0

        if current_ratio < Decimal("0.5"):
            return 1
        elif current_ratio < Decimal("1.0"):
            return 2
        elif current_ratio < target_ratio:
            return 3
        else:
            return 0

    def _parse_part_analysis_response(
        self,
        content: str,
        part_code: str,
        part_name: str,
        unit: str,
        cost_price: float,
        shop_data_list: List[Dict],
        target_ratio: Decimal = Decimal("1.3"),
    ) -> Tuple[PartAnalysisResult, List[ReplenishmentSuggestion]]:
        """
        解析单配件分析响应

        Args:
            content: LLM 响应内容
            part_code: 配件编码
            part_name: 配件名称
            unit: 单位
            cost_price: 成本价
            shop_data_list: 门店数据列表

        Returns:
            (配件分析结果, 补货建议列表)
        """
        suggestions = []

        # 计算默认配件汇总数据
        total_storage = sum(Decimal(str(s.get("valid_storage_cnt", 0))) for s in shop_data_list)
        total_avg_sales = sum(Decimal(str(s.get("avg_sales_cnt", 0))) for s in shop_data_list)
        group_ratio = total_storage / total_avg_sales if total_avg_sales > 0 else Decimal("0")

        part_result = PartAnalysisResult(
            part_code=part_code,
            part_name=part_name,
            unit=unit,
            cost_price=Decimal(str(cost_price)),
            total_storage_cnt=total_storage,
            total_avg_sales_cnt=total_avg_sales,
            group_current_ratio=group_ratio,
            need_replenishment=False,
            total_suggest_cnt=0,
            total_suggest_amount=Decimal("0"),
            shop_count=len(shop_data_list),
            need_replenishment_shop_count=0,
            part_decision_reason="",
            priority=2,
            confidence=0.8,
            suggestions=[],
        )

        try:
            # 提取 JSON
            if "```json" in content:
                content = content.split("```json")[1].split("```")[0].strip()
            elif "```" in content:
                content = content.split("```")[1].split("```")[0].strip()

            result = json.loads(content)

            # 获取配件级汇总信息
            confidence = float(result.get("confidence", 0.8))
            part_decision_reason = result.get("part_decision_reason", "")
            need_replenishment = result.get("need_replenishment", False)
            priority = int(result.get("priority") or 2)

            # 更新配件结果
            part_result.need_replenishment = need_replenishment
            part_result.total_suggest_cnt = int(result.get("total_suggest_cnt") or 0)
            part_result.total_suggest_amount = Decimal(str(result.get("total_suggest_amount", 0)))
            part_result.shop_count = int(result.get("shop_count") or len(shop_data_list))
            part_result.part_decision_reason = part_decision_reason
            part_result.priority = priority
            part_result.confidence = confidence

            # 如果LLM返回了商家组合级数据,使用LLM的数据
            if "total_storage_cnt" in result:
                part_result.total_storage_cnt = Decimal(str(result["total_storage_cnt"]))
            if "total_avg_sales_cnt" in result:
                part_result.total_avg_sales_cnt = Decimal(str(result["total_avg_sales_cnt"]))
            if "group_current_ratio" in result:
                part_result.group_current_ratio = Decimal(str(result["group_current_ratio"]))

            # 构建建议字典以便快速查找
            shop_suggestion_map = {}
            shop_suggestions_data = result.get("shop_suggestions", [])
            if shop_suggestions_data:
                for shop in shop_suggestions_data:
                    s_id = int(shop.get("shop_id") or 0)
                    shop_suggestion_map[s_id] = shop

            # 统计需要补货的门店数
            need_replenishment_shop_count = len([s for s in shop_suggestions_data if int(s.get("suggest_cnt") or 0) > 0])
            part_result.need_replenishment_shop_count = need_replenishment_shop_count

            # 递归所有输入门店,确保每个门店都有记录
            for shop_data in shop_data_list:
                shop_id = int(shop_data.get("shop_id", 0))
                shop_name = shop_data.get("shop_name", "")

                # 检查LLM是否有针对该门店的建议
                if shop_id in shop_suggestion_map:
                    s_item = shop_suggestion_map[shop_id]
                    suggest_cnt = int(s_item.get("suggest_cnt") or 0)
                    suggest_amount = Decimal(str(s_item.get("suggest_amount") or 0))
                    reason = s_item.get("reason") or part_decision_reason
                    shop_priority = int(s_item.get("priority") or priority)
                else:
                    # LLM未提及该门店,根据门店数据生成个性化默认理由
                    suggest_cnt = 0
                    suggest_amount = Decimal("0")

                    # 计算该门店的库存和销售数据
                    _storage = Decimal(str(shop_data.get("valid_storage_cnt", 0)))
                    _avg_sales = Decimal(str(shop_data.get("avg_sales_cnt", 0)))
                    _out_times = shop_data.get("out_times", 0) or 0
                    _out_duration = shop_data.get("out_duration", 0) or 0
                    _ratio = _storage / _avg_sales if _avg_sales > 0 else Decimal("0")

                    # 根据库销比规则计算 priority
                    shop_priority = self._calculate_priority_by_ratio(_ratio, _avg_sales, target_ratio)

                    if _storage > 0 and _avg_sales <= 0:
                        reason = f"「呆滞件」当前库存{_storage}件,但90天内无销售记录,库存滞销风险高,暂不补货。"
                        shop_priority = 0
                    elif _storage <= 0 and _avg_sales < 1:
                        reason = f"「低频件-需求不足」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,需求过低,暂不纳入补货计划。"
                        shop_priority = 0
                    elif _out_times < 3:
                        reason = f"「低频件-出库次数不足」90天内仅出库{_out_times}次(阈值≥3次),周转频率过低,暂不纳入补货计划。"
                        shop_priority = 0
                    elif _out_duration >= 30:
                        reason = f"「低频件-出库间隔过长」平均出库间隔{_out_duration}天(阈值<30天),周转周期过长,暂不纳入补货计划。"
                        shop_priority = 0
                    elif _avg_sales > 0 and _ratio >= target_ratio:
                        _days = int(_storage / _avg_sales * 30) if _avg_sales > 0 else 0
                        reason = f"「库存充足」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,库销比{_ratio:.2f},可支撑约{_days}天销售,无需补货。"
                        shop_priority = 0
                    elif shop_priority == 1:
                        _days = int(_storage / _avg_sales * 30) if _avg_sales > 0 else 0
                        reason = f"「急需补货」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,库销比{_ratio:.2f},仅可支撑约{_days}天销售,存在缺货风险。"
                    elif shop_priority == 2:
                        _days = int(_storage / _avg_sales * 30) if _avg_sales > 0 else 0
                        reason = f"「建议补货」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,库销比{_ratio:.2f},可支撑约{_days}天销售,库存偏低建议补货。"
                    elif shop_priority == 3:
                        _days = int(_storage / _avg_sales * 30) if _avg_sales > 0 else 0
                        reason = f"「可选补货」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,库销比{_ratio:.2f},可支撑约{_days}天销售,可根据资金情况酌情补货。"
                    else:
                        reason = f"「无需补货」当前库存{_storage}件,月均销量{_avg_sales:.2f}件,AI分析判定暂不补货。"

                curr_storage = Decimal(str(shop_data.get("valid_storage_cnt", 0)))
                avg_sales = Decimal(str(shop_data.get("avg_sales_cnt", 0)))
                if avg_sales > 0:
                    current_ratio = curr_storage / avg_sales
                else:
                    current_ratio = Decimal("0")

                suggestion = ReplenishmentSuggestion(
                    shop_id=shop_id,
                    shop_name=shop_name,
                    part_code=part_code,
                    part_name=part_name,
                    unit=unit,
                    cost_price=Decimal(str(cost_price)),
                    current_storage_cnt=curr_storage,
                    avg_sales_cnt=avg_sales,
                    current_ratio=current_ratio,
                    suggest_cnt=suggest_cnt,
                    suggest_amount=suggest_amount,
                    suggestion_reason=reason,
                    priority=shop_priority,
                    confidence=confidence,
                )
                suggestions.append(suggestion)

        except json.JSONDecodeError as e:
            logger.error(f"解析配件 {part_code} 分析结果失败: {e}")
            part_result.part_decision_reason = f"分析失败: {str(e)}"
            for shop_data in shop_data_list:
                suggestions.append(ReplenishmentSuggestion(
                    shop_id=int(shop_data.get("shop_id", 0)),
                    shop_name=shop_data.get("shop_name", ""),
                    part_code=part_code,
                    part_name=part_name,
                    unit=unit,
                    cost_price=Decimal(str(cost_price)),
                    current_storage_cnt=Decimal(str(shop_data.get("valid_storage_cnt", 0))),
                    avg_sales_cnt=Decimal(str(shop_data.get("avg_sales_cnt", 0))),
                    current_ratio=Decimal("0"),
                    suggest_cnt=0,
                    suggest_amount=Decimal("0"),
                    suggestion_reason=f"分析失败: {str(e)}",
                    priority=3,
                    confidence=0.0,
                ))

        except Exception as e:
            logger.error(f"处理配件 {part_code} 分析结果异常: {e}")

        part_result.suggestions = suggestions
        return part_result, suggestions